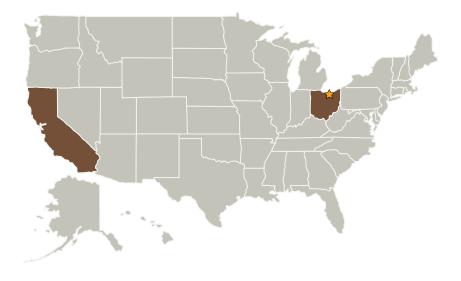
Tunable Multiplexed Resonant Dipole Nanoantenna Array, Phase I



Completed Technology Project (2006 - 2006)

Project Introduction

Radio frequency (RF) spectral density, instrument mass, and power considerations drive developments in construction of nanoscale features and terahertz, even petahertz frequencies. Tunable resonant nanostructures, capable of measurable interactions such as attenuation, polarizability, or reradiation properties are necessary to investigate IR or optical wavelengths applications. Carbon nanotubes (CNT's) have material properties and dimensions that allow it to operate in the optical, and IR regimes. Ion flux molding (IFM) fabrication techniques enable assembly of conductive CNT structures with tunable EM response. The CNT structures are designed specifically to test the performance potential of nanoscale "thin-wire" antenna applications. Antenna performance metrics can be addressed by using IFM fabrication techniques on carbon nanotubes and nanotube arrays creating narrow band resonant dipole antennas. IFM fabrication techniques provide the ability to bend, mold, and configure an individual CNT or an array of CNTs to measure antenna properties such as the antenna length effect and the polarization effect. This will be accomplished through use of carbon nanotube (CNT) growth technology and microfabrication techniques combined with IFM molding processes to fabricate CNT antennas and antenna arrays. Ion Flux Molding (IFM) technology is the crucial element required to bend and mold the CNT into antenna morphologies.

Primary U.S. Work Locations and Key Partners

Tunable Multiplexed Resonant Dipole Nanoantenna Array, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Tunable Multiplexed Resonant Dipole Nanoantenna Array, Phase I

Completed Technology Project (2006 - 2006)

Organizations Performing Work	Role	Туре	Location
☆Glenn Research	Lead	NASA	Cleveland,
Center(GRC)	Organization	Center	Ohio
modus	Supporting	Industry	danville,
nanotechnology	Organization		California

Primary U.S. Work Locations	
California	Ohio

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └ TX08.2 Observatories
 - ☐ TX08.2.2 Structures and Antennas